Grounded Word Sense Translation

Chiraag Lala, Pranava Madhyastha and Lucia Specia

Imperial College London

Why look at images?

"A sportsperson is playing football"

"Une **sportive** joue au football"

"Une **sportif** joue au football"

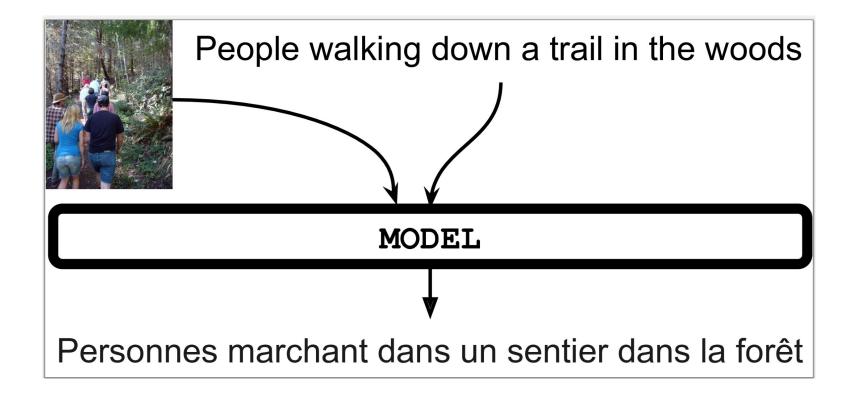
Why look at images?

"A man holding a **seal**"

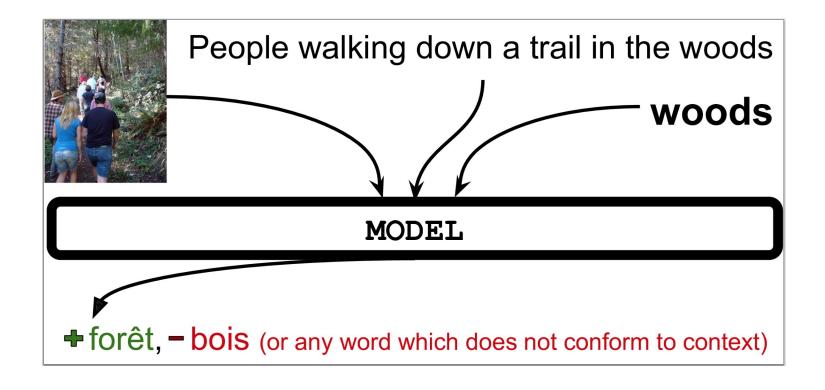
"Ein Mann hält einen Seehund"

"Ein Mann hält ein Siegel"

Multimodal Machine Translation



This paper: focus on ambiguous words only



Tagging Task

People walking down a trail in the woods

French labels/tags: sentier

entier forêt

The Dataset

From Multi30K: take words in the source language (En) with multiple translations in the target languages (De, Fr) with different meanings

	En-Fr	En-De
Ambiguous words	661	745
Samples	44,779	53,868
Avg candidates/word	3	4.1
MFT	77%	65%

Human Annotation

Humans manually labelled the test set and marked cases when they needed images

People walking down a trail in the woods

French labels/tags: sentier forê

Human Annotation

Annotators found image necessary in 7.8% of the samples for En-De, and 8.6% for En-Fr

Words like *player*, *hat* and *coat* require the image as text alone is not sufficient to disambiguate

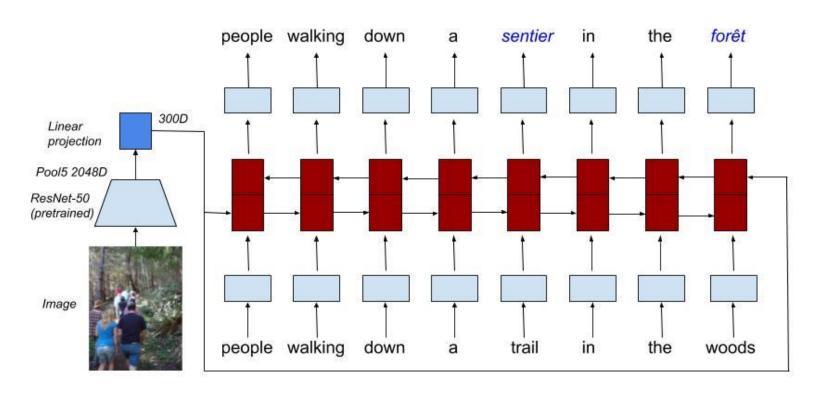
(a) hut

(c) mütze

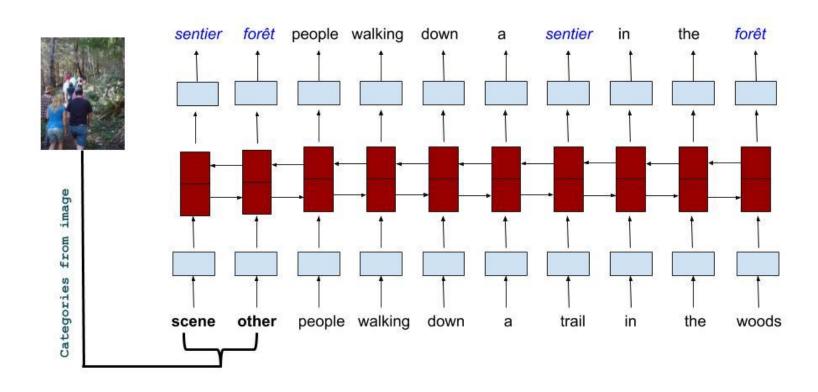
(b) kappe

(d) kopfbedeckung

Computational Models: BLSTM+image



Computational Models: BLSTM+object_prepend



Results

Accuracy: proportion of ambiguous words correctly translated

Main finding: ULSTM benefits much more from global image features than BLSTM

Architectures	EnDe	Δ	EnFr	Δ				
Random	24.4	-	- 33.6					
MFT	65.34	- 77.73		-				
ambiguous sentences + ambiguous words ULSTM 63.58 - 74.42								
ULSTM+image	66.33	2.75	76.89	2.47				
BLSTM	68.15	-	78.58					
BLSTM+image	68.62	0.47	79.12	0.54				

Results

Main finding: BLSTM models with pre-pending object categories outperform all the other models

Architectures	EnDe	Δ	EnFr	Δ
Random	24.4	-	33.6	-
MFT	65.34)-7	77.73	-
ambiguou	s sentences +	all wor	ds	
ImageOnly	67.92	-	78.35	
ObjectOnly	68.15	-	79.74	
BLSTM	69.61	-	80.35	
BLSTM+images	69.79	0.18	80.43	0.08

69.79

71.02

0.18

1.41

81.28

82.59

0.93

BLSTM+object

BLSTM+object-prepend