Sheffield Submissions

For WMT18 Multimodal Translation Task

Chiraag Lala, Pranava Madhyastha, Carolina Scarton and Lucia Specia {clala1, p.madhyastha, c.scarton, l.specia}@sheffield.ac.uk

Task 1 Task 1b Single Source Multimodal Machine Translation Multi - source Multimodal Machine Translation $EN + DE + FR + \square \rightarrow CS$ $EN + \square \rightarrow DE \text{ or } FR \text{ or } CS$ Concatenation and Consensus Re-ranking with WSD

A baseline NMT system (SHEF_Base) generates n-best translation hypotheses. These are re-ranked using novel cross-lingual Word Sense

First, we train standard attentive NMT models for three language directions into Czech and generate 10-best lists in Czech from each model

Why cross-lingual WSD?

We believe humans usually look at the image to disambiguate ambiguous words in the source sentence and then select correct translation.

"A sportsperson is playing football"

Disambiguation (WSD) models.

SHEF_Base model

An ensemble of different runs of a standard attentive NMT model with five different seeds.

SHEF MLTC: concatenate the 10-best lists and then re-rank using MLT model.

SHEF_Con: consensus of the 10-best lists, i.e. select the translation hypothesis that appears in the intersection of the three lists.

"Une sportive joue au football"

"Une sportif joue au football"

Why Re-ranking?

In a preliminary experiment, we trained a standard NMT and looked at 20-best hypotheses. The best of 20-best hypotheses (Oracle) was compared to the 1-best hypothesis and we found plenty of scope for re-ranking these hypotheses.

Results and Conclusion

Sheffield Submissions (METEOR scores \uparrow)

people walking down trail the woods а

10-best translation hypotheses with likelihood scores are generated. It's 1-best (no re-ranking) forms the **SHEF_Base**

Cross-lingual WSD models

1. Most Frequent Sense (SHEF_MFS) $Freq_{woods}(bois) = 79, Freq_{woods}(for\hat{e}t) = 16$ Most Frequent Translation of *woods* is *bois*

2. Lexical Translation (SHEF_LT)

Augmentation and Classifiers

First, we add more training data by translating German, French, Czech training instances into English and then train EN-CS NMT model.

 $\begin{array}{cccc} \mathsf{DE} & \mathsf{FR} & \mathsf{CS} \\ \downarrow & \downarrow & \downarrow \\ \mathsf{EN} + \mathsf{EN}^* + \mathsf{EN}^* + \mathsf{EN}^* + & & & \longrightarrow \mathsf{CS} \end{array}$

The 10-best translation hypotheses of this EN-CS NMT model on training and val instances are re-ordered by sentence-level METEOR scores and then top 4 are labeled positive.

Then, we train multimodal binary classifiers: 1. Random Forest (SHEF_ARF)

	_	
Source Sentence] 🛛 👝 👝 Random Forest 🧹 🗢	
Source Sentence		
Embodding		

Task 1	EN-DE	EN-FR	EN-CS*	Task 1b	A
SHEF_LT	50.7	59.8	29.1	SHEF_Con	
SHEF_MLT	50.7	59.8	29.1	SHEF_MLTC	
SHEF_Base	50.7	59.8	29.4	SHEF_ARNN	ĺ
SHEF_MFS	50.7	59.7	29.2	SHEF_ARF	
Baseline	47.4	56.9	27.7	Baseline	

• Our systems are better than baseline

• Hardly any difference between our systems

Why no difference?

For EN-FR, only 12% to 15% of the test instances get re-ranked

3. Multimodal LT (SHEF_MLT)

These models are trained on the Multimodal Lexical Translation Dataset (https:// github.com/sheffieldnlp/mlt) derived from the Multi30K corpus. Caveat: EN-CS is noisy.

Sentence Embeddings using Arora et al. (2016)

2. RNN Classifier (SHEF_ARNN)

Contribution of re-ranking is small and since SHEF_LT (Text-only) and SHEF_MLT (Image-aware) outputs are nearly identical, the contribution of image is further minute.

Task1b shows a similar trend: the contribution of images is minor. The best model was SHEF_CON – the consensus-based model that does not use image information.