Sheffield Submissions
For WMT18 Multimodal Translation Task

Chiraag Lala, Pranava Madhyastha, Carolina Scarton and Lucia Specia
{clala1, p.madhyastha, c.scarton, l.specia}@sheffield.ac.uk

Task 1
Single Source Multimodal Machine Translation
EN + 📷 → DE or FR or CS

Re-ranking with WSD
A baseline NMT system (SHEF_Base) generates n-best translation hypotheses. These are re-ranked using novel cross-lingual Word Sense Disambiguation (WSD) models.

SHEF_Base model
An ensemble of different runs of a standard attentive NMT model with five different seeds.

10-best translation hypotheses with likelihood scores are generated. It’s 1-best (no re-ranking) forms the SHEF_Base

Cross-lingual WSD models

1. **Most Frequent Sense (SHEF_MFS)**
 \(\text{Freq}_{\text{wooden}}(\text{bois}) = 79 \), \(\text{Freq}_{\text{forest}}(\text{forêt}) = 10 \)
 Most Frequent Translation of woods is bois

2. **Lexical Translation (SHEF_LT)**
 people walking down a trail in the woods

3. **Multimodal LT (SHEF_MLT)**
 These models are trained on the Multimodal Lexical Translation Dataset (https://github.com/sheffieldmlp/mlt) derived from the Multi30K corpus. Caveat: EN-CS is noisy.

Concatenation and Consensus
First, we train standard attentive NMT models for three language directions into Czech and generate 10-best lists in Czech from each model.
SHEF_MLT: concatenate the 10-best lists and then re-rank using MLT model.
SHEF_Con: consensus of the 10-best lists, i.e. select the translation hypothesis that appears in the intersection of the three lists.

Augmentation and Classifiers
First, we add more training data by translating German, French, Czech training instances into English and then train EN-CS NMT model.
The 10-best translation hypotheses of this EN-CS NMT model on training and validation instances are re-ordered by sentence-level METEOR scores and then top 4 are labeled positive.

Then, we train multimodal binary classifiers:

1. **Random Forest (SHEF_ARF)**

2. **RNN Classifier (SHEF_ARNN)**

Why cross-lingual WSD?
We believe humans usually look at the image to disambiguate ambiguous words in the source sentence and then select correct translation.

Why Re-ranking?
In a preliminary experiment, we trained a standard NMT and looked at 20-best hypotheses. The best of 20-best hypotheses (Oracle) was compared to the 1-best hypothesis and we found plenty of scope for re-ranking these hypotheses.

Why no difference?
For EN-FR, only 12% to 15% of the test instances get re-ranked.

And, less than 2% lexical changes

Contribution of re-ranking is small and since SHEF_LT (Text-only) and SHEF_MLT (Image-aware) outputs are nearly identical, the contribution of image is further minute.

Task1b shows a similar trend: the contribution of images is minor. The best model was SHEF_CON – the consensus-based model that does not use image information.